Services¶
Services are the capabilities available to agents at runtime. Agents declare their service requirements in agent.toml and the supervisor routes requests to the appropriate worker via the message queue.
Available Services¶
| Service | Queue name | Description |
|---|---|---|
| Inference | infer | Text generation via LLM |
| Embedding | embed | Vector embedding generation |
| Object Storage | storage | Persistent key-value object storage |
| Vector Storage | storage | Similarity search over vector embeddings |
Inference¶
Generates text from a prompt using a registered model.
Backends:
| Backend | Engine | Description |
|---|---|---|
| Ollama | ollama | Local inference via Ollama server |
| OpenRouter | openrouter | Remote inference via OpenRouter API |
Parameters:
| Parameter | Type | Default | Description |
|---|---|---|---|
max_tokens | integer | 1024 | Maximum tokens to generate |
temperature | float | 0.7 | Sampling temperature |
Embedding¶
Generates vector embeddings for text input, used for semantic search via vector storage.
Backends:
| Backend | Engine | Description |
|---|---|---|
| Ollama | ollama | Local embedding via Ollama server |
Parameters:
| Parameter | Type | Default | Description |
|---|---|---|---|
dimensions | integer | 768 | Embedding vector dimensions |
Object Storage¶
Persistent key-value storage for agent data.
Backend: SQLite — file-backed, durable, content-addressed.
Vector Storage¶
Similarity search over vector embeddings, powered by sqlite-vec (MIT licensed).
Backend: SQLite via sqlite-vec.
Message Flow¶
All service interactions use typed messages on the queue:
- Agent sends a
RequestMessageto the service queue - Worker processes the request and sends a
ResponseMessageback
See Queue System for the full message flow.
See Also¶
- agent.toml — declaring service requirements
- Storage how-to guide
- Storage Model explanation